Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells.
نویسندگان
چکیده
Activation of the transcription factor nuclear factor-kappa B (NF-kappa B) has been implicated in pancreatic tumorigenesis. We evaluated the effect of a novel NF-kappa B inhibitor, parthenolide, a sesquiterpene lactone isolated from the herb feverfew, in three human pancreatic tumor cell lines (BxPC-3, PANC-1, and MIA PaCa-2). Parthenolide inhibited pancreatic cancer cell growth in a dose-dependent manner with substantial growth inhibition observed between 5 and 10 micromol/L parthenolide in all three cell lines. Parthenolide treatment also dose-dependently increased the amount of the NF-kappa B inhibitory protein, I kappa B-alpha, and decreased NF-kappa B DNA binding activity. We have previously shown that nonsteroidal anti-inflammatory drugs (NSAID) suppress the growth of pancreatic cancer cells. To determine whether inhibition of the NF-kappa B pathway by parthenolide could sensitize pancreatic cancer cells to NSAID inhibition, BxPC-3, PANC-1, and MIA PaCa-2 cells were treated with parthenolide and the NSAID sulindac, either alone or in combination. Treatment with the combination of parthenolide and sulindac inhibited cell growth synergistically in MIA PaCa-2 and BxPC-3 cells and additively in PANC-1 cells. In addition, treatment with the parthenolide/sulindac combination lowered the threshold for apoptosis. Increased levels of I kappa B-alpha protein were detected, especially in MIA PaCa-2 cells, after treatment with parthenolide and sulindac compared with each agent alone. Similarly, decreased NF-kappa B DNA binding and transcriptional activities were detected in cells treated with the combination compared with the single agents, demonstrating cooperative targeting of the NF-kappa B pathway. These data provide preclinical support for a combined chemotherapeutic approach with NF-kappa B inhibitors and NSAIDs for the treatment of pancreatic adenocarcinoma.
منابع مشابه
Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-KB pathway in pancreatic carcinoma cells
Activation of the transcription factor nuclear factor-KB (NF-KB) has been implicated in pancreatic tumorigenesis. We evaluated the effect of a novel NF-KB inhibitor, parthenolide, a sesquiterpene lactone isolated from the herb feverfew, in three human pancreatic tumor cell lines (BxPC-3, PANC-1, and MIA PaCa-2). Parthenolide inhibited pancreatic cancer cell growth in a dose-dependent manner wit...
متن کاملSuppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin D1 inhibition in vivo.
The design of novel targeted or combination therapies may improve treatment options for pancreatic cancer. Two targets of recent interest are nuclear factor-kappaB (NF-kappaB) and cyclooxygenase (COX), known to be activated or overexpressed, respectively, in pancreatic cancer. We have previously shown that parthenolide, a proapoptotic drug associated with NF-kappaB inhibition, enhanced the grow...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 4 4 شماره
صفحات -
تاریخ انتشار 2005